p-CHLOROBENZOYL CHLORIDE

PRODUCT IDENTIFICATION

CAS NO. 122-01-0

p-CHLOROBENZOYL CHLORIDE

EINECS NO. 204-515-3
FORMULA ClC6H4COCl
MOL WT. 175.01

H.S. CODE

2916.39
TOXICITY  
SYNONYMS 4-Chlorobenzoyl Chloride; PCOC;
para-Chlorobenzoyl chloride;
SMILES

 

CLASSIFICATION

 

PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE clear liquid
MELTING POINT 12 - 14 C
BOILING POINT

222 C

SPECIFIC GRAVITY 1.36 - 1.38
SOLUBILITY IN WATER Decomposes
pH  
VAPOR DENSITY 6.03

NFPA RATINGS

Health: 3; Flammability: 1; Reactivity: 0

AUTOIGNITION

450 C

REFREACTIVE INDEX

 

FLASH POINT

110 C

STABILITY Stable under ordinary conditions. moisture sensitive.

APPLICATIONS

Acyl is a radical formed from an organic acid by removal of a hydroxyl group. The general formula of acyl compound is RCO-. Acyl halide is one of a large group of organic substances containing the halocarbonyl group, have the general formula RCO·X, where X is a halogen atom (fluorine, chlorine, bromine, iodine, and astatine) and R may be aliphatic, alicyclic, aromatic, and H etc. In substitutive chemical nomenclature, their names are formed by adding '-oyl' as a suffix to the name of the parent compound; ethanoyl chloride, CH3COCl, is an example. The terms acyl and aroyl halides refer to aliphatic or aromatic derivatives, respectively. Acyl halides are made by replacing the -OH group in carboxylic acids by halogen using halogenating agents. They react readily with water, alcohols, and amines and are widely used in organic synthetic process whereby the acyl group is incorporated into the target molecules by substitution of addition-elimination sequence called acylation reaction.  Acylation reaction involves substitution by an electron donor (nucleophile) at the electrophilic carbonyl group (C=O). Common nucleophiles in the acylation reaction are aliphatic and aromatic alcohols, both of which give rise to esters and amines (RNH2) which give amides. The carboxylic acid (X = OH) itself can function as an acylating agent when it is protonated by a strong acid catalyst as in the direct esterification of an alcohol. Two common acylation agents, with the general formula RCOX, are acid halides (X = halogen atom) and anhydrides (X = OCOR). Schotten-Baumann reaction is an acylation reaction that uses an acid chloride in the presence of dilute alkali to acylate the hydroxyl and amino group of organic compounds. There are also other acylating agents. Benzoyl Chloride belongs to acyl halides. Acyl halides are involved in acetylation process which introduce an acetyl group (CH3CO-) into compounds. Benzoyl Chloride decomposes violently by heating or on exposure to moist air or water. It reacts violently with strong oxidants, metals (especially iron), alkali and earth alkali metals, bases and wide range of organic substances such as amines, dimethyl sulfoxide and alcohols. The reactions cause fire and explosion hazard. It is used to introduce benzenecarbonyl groups into compounds. Typical reactions undergone by benzoyl chloride are the Schotten-Baumman reaction (the benzoylation of compounds containing a hydrogen), and the Friedel-Crafts reactions (preparation of substituted benzophenones). It is used in manufacturing peroxides such as a benzoyl peroxide and t-butyl perbenzoate. It is also used in the synthesis of benzophenone and its derivatives used in manufacturing pesticides, pharmaceuticals, perfume fixative, polymerization catalyst, benzolating agents, and dyestuffs.

When substituted benzene molecules undergo electrophilic substitution reactions, substituents on a benzene ring can influence the reactivity. Activating substituents that activate the benzene ring toward electrophilic attack can alter the reaction rate or products by electronically or sterically affecting the interaction of the two reactants. deactivating substituents removes electron density from the benzene ring, making electrophilic aromatic substitution reactions slower and more difficult than benzene itself. For example, a hydroxy or methoxy substituent in phenol and anisole increases the rate of electrophilic substitution, while a nitro substituent decreases the ring's reactivity. Electron donating substituents activate the benzene ring toward electrophilic attack, and electron withdrawing substituents deactivate the ring, making it less reactive to electrophilic attack. The strongest activating substituents are the amino (-NH2) and hydroxyl (-OH) groups.

Reactivity Effects

Activating substituents

Deactivating substituents

Strong

-NH2, -NHR, -NR2, -OH, -O-

-NO2, -NR3+, -CF3, CCl3

Moderate

-NHCOCH3, -NHCOR, -OCH3,-OR

-CN, -SO3H, -COOH, -COOR, -COH, -COR

Weak

-CH3, -C2H5, -R, -C6H5

-F, -Cl, -Br, -I

Toluene, aniline and phenol are activated aromatic compounds. Examples of deactivated aromatic compounds are nitrobenzene, benzaldehyde and halogenated benzenes.

Activating substituents generally direct substitution to the ortho and para positions where substitutions must take place. With some exceptions, deactivating substituents direct to the meta position. Deactivating substituents which orient ortho and para- positions are the halogens (-F, -Cl, -Br, -I) and -CH2Cl, and -CH=CHNO2

When disubstituted benzene molecules undergo electrophilic substitution reactions, a new substituent is directed depends on the orientation of the existing substituents and their individual effects; whether the groups have cooperative or antagonistic directing effects. Ortho position is the most reactive towards electrophile due to the highest electron density ortho positions. But this increased reactivity is countervailed by steric hindrance between substituent and electrophile.

A nucleophilic substitution is a substitution reaction which the nucleophile displaces a good leaving group, such as a halide on an aromatic ring. This mechanism is called SNAr ( the two-step addition-elimination mechanism), where electron withdrawing substituents activate the ring towards nucleophilic attack. Addition-elimination reactions usually occur at sp2 or sp hybridized carbon atoms, in contrast to SN1 and SN2 at sp3. Chloro and bromobenzene reacts with the very strong base sodium amide (NaNH2) to give good yields of aniline. Other nucleophilic aromatic substitution mechanisms include benzyne mechanism and free radical (SRN1) mechanism.

Common reactions of substituent groups on benzene ring include:
  • Conversion of halogens into other various substituents
  • Modifying activating substituents
  • Oxidative degradation of alkyl chain
  • Reduction of nitro or carbonyl substituents
  • Reversibility of the aromatic sulfonation reaction
SALES SPECIFICATION

APPEARANCE

Clear liquid
ASSAY

99.0% min

TRANSPORTATION
PACKING 250kgs in drum
HAZARD CLASS 8 (Packing Group: II)
UN NO. 1760
OTHER INFORMATION
Hazard Symbols: C, Risk Phrases: 34, Safety Phrases: 26/28A

PRICES

Click to open the table

 

Click to close the table